
© 2001 NET U Magazine
Fawcette Technical Publications

Issue November 2001
Section
Main file name Nu0001comingofaget3.doc

Listing file name
Sidebar file name

Table file name
Screen capture file names
Infographic/illustration file names Nu0001comingofagef1.doc

Photos or book scans
Special instructions for Art dept.
Editor

Status Nu0001comingofage.doc (raw) JBL content
edit (t1) author review (t2) final (t3)

EN review

Character count
Package length
ToC blurb To fully exploit .NET, you should know how

the technology evolved, and how it corrects
the mistakes and improves on the successes
of the past.

Overline:

Byline:
By Juval Lowy

Head:

Software Engineering

Comes of Age

.NET finally gets it

right.

.NET is the product of 40 years of advances in software engineering. You’re probably

asking, have they finally got it right? Will the darn thing work? Will I have to spend

another weekend lost in the white glare of my computer screen? The answer is yes, yes,

that depends on your boss.

 To make the most of .NET, you should know where the technology comes from and

how the Microsoft created it to correct the mistakes and improve on the successes of the

past. To this end, the .NET design team observed how software engineers develop

applications and solutions, the hurdles they face, the tradeoffs they make, and the

successful design methodologies they use. Understanding .NET’s evolution can help you

optimize your own application designs for maintainability, extensibility, reusability, and

productivity.

 Contrary to common knowledge, the past few decades have seen only a handful of

software-engineering breakthroughs (see Figure 1). Most of the changes have been

incremental. Fifty years ago domain experts, such as scientists or electrical engineers,

performed most programming using machine code or manipulating hardware bits. The

challenge these domain experts faced was to squeeze every drop of performance and

space from enormously expensive commuters, amazingly weak by today’s standards.

 This situation didn’t change significantly even when high-level structured languages

came on the scene. Applications still had limited requirements, and the user interface was

primitive. When computers became more pervasive, developers realized the real issue

was to maintain applications for longer periods. The hardware’s cost and even the initial

development effort only mounted to a small fraction of the cost spent maintaining an

application over its lifetime (normally a few years during the ’70s).

 Two things became clear at that point: Architects had to design applications for

extensibility from day one, and the cost of a downstream change (during the maintenance

phase) was sometimes hundreds of time more expensive than making the same change

during the application’s initial design. Unfortunately, the programming languages

developers used during the late ‘70s and early ‘80s, such as C, Pascal, and Fortran,

landed themselves easily into creating spaghetti-like applications, with tight coupling

between different elements of the program. A change made to one part of the system

triggered an avalanche of changes all over.

 Programs typically used function-data decomposition, meaning that global data

structures, such as variables, lists, and arrays, held the data, and global function

manipulated the data and executed the business logic. You could write good code with

languages like C, but the language itself had no native support for encapsulation,

inheritance, and polymorphism. If you wanted those features, you had to manually

provide them, and by doing so, you sometimes made the application even more complex.

 These problems led to the rise of object-oriented programming (OOP). This approach

is based on a simple idea—encapsulate the data and the logic manipulating the data in an

object. The object only exposes abstracted entry points implementing some generic

behavior contract. The object hides the actual implementation of both the data and the

logic. By hiding and encapsulating implementation details, changing these details doesn’t

affect the client code using them.

 With the advent of C++, object-oriented programming became pervasive during the

‘80s and early ‘90s. C++ promised to solve the software industry maintenance crisis and

lack of reuse. OOP also offered polymorphism between different implementations of the

same set of methods, and inheritance of implementation. Software engineers started

modeling their applications in terms of complex class hierarchies, trying to approximate

as much as possible the business problem their modeling solved.

OOP Fails to Deliver

However, object-oriented programming failed to deliver on its promises of

maintainability, extensibility, and reuse, thus becoming probably the great

disappointment of software engineering. The reasons have to do with both the nature of

OOP itself and how programmers used it. The key to successfully applying object-

oriented ideas is careful design and expert experience in system analysis and architecture.

C++ and object-oriented analysis and design experts are rare—as few as one in 100

software developers have these skills. Even though every developer used languages like

C++, it’s really a tool for experts. In the wrong hands, C++ causes more harm than good.

On top of that, C++ still allowed for bad practices, including global variables or methods,

and “friend” classes. This increased coupling between classes in the application.

 Even in the hands of experts, object-oriented programming has intrinsic flaws. First,

inheritance makes for a poor reuse mechanism. When a developer derives a subclass from

a base class, the developer must be intimately aware of the base class’s implementation

details. For example, what happens when you change a member variable’s value? How

does this action affect the code in the base class? This form of “white box” reuse simply

doesn’t allow for economy of scale in large organizations’ reuse programs or successful

adoption of third-party frameworks.

 Second, object-oriented programming provided developers next to nothing when it

came to real-time design patterns such as multithreading concurrency management,

security, and distributed application—not to mention application deployment and version

control. Third, object-oriented methodology assumed the application was one monolithic

chunk of code and that reuse was usually source-files based, meaning the reusing party

had to have the sources of the objects providing the functionality. When developers in the

early ‘90s started composing applications out of dynamically loaded binary libraries

(DLL), that left no easy way of accessing the objects in these modules. The scene was set

for the rise of component-oriented programming.

 This technology’s fundamental principal is that the unit of use is an interface providing

abstract service definition, not the object implementing the interface. You implement the

interface on a black-box binary component that encapsulates completely its interior. This

principal is called separation of interface from implementation. To use a component, all

the client needs to know is the interface definition (the service “contract”) and have a

binary component that implements the interface. This extra level of indirection allows for

“plug and play” between different implementations of the same interface, without

affecting the client code at all. The client need not recompile its code to use a new

version, or sometimes not even to shut down for an upgrade.

 Provided the interfaces are immutable, the objects implementing the interfaces are free

to evolve and introduce new versions. Because the client interacts only with an interface,

you can introduce a proxy (an object providing the same interface as the real object)

between the client and the object. You can do a lot with proxies. You can have them

redirect the call to a remote machine or synchronize access to the object by multiple

threads; you can also manage transactions, enforce access security, and so on. In essence,

you can provide almost any conceivable component service, without having the object

developer invest costly development effort.

COM Pushes the Envelope

In component-oriented programming, developers still used traditional object-oriented

methodologies inside a component, but usually the resulting object hierarchies were

simple and easy to manage. Component technologies, such as COM, were a major

breakthrough in software engineering, and they provided additional benefits, including

language independence. As long as the client and the object agreed on the interface, and

if you gave at run time the right binary signatures, you could use any language to

implement the component and its client. Another COM benefit is location transparency.

When using proxies, nothing in the client code is pertinent to the object location (such as

sockets or pipes calls), and as result, you can change the object location without affecting

the client.

 But these first attempts at component technologies had their flaws. First,

implementation languages like C++ didn’t support components natively, so developers

had to use intricate and not trivial to learn frameworks such as ATL. Second, the

supporting operating system (Windows, for example) provided its services in the form of

thousands of inconsistent functional entry points, making the overall programming model

complex.

 Third, developers still had to manage many aspects of their code, including versioning,

memory allocation, and object life cycle. The result was that even though technologies

such as COM and CORBA seemed like a good idea, in practice developers spent as much

as 80 percent or more of their time on component connectivity and “plumbing” issues,

instead of adding business value to their application. Not only that, but you could trace

most bugs (and the time spent fixing them) back to connectivity and plumbing defects

(for example, memory management and object lifecycle), not to the business problem the

application addressed.

 In the second half of the ’90s, with the Internet boom, many companies (old and new)

shifted their engineering focus from design and support of long-term maintenance to

rapid development. A software application’s ever-shorter shelf life meant that being first

to market and beating the competition with successful fast releases became more

important than up-front investments in design, maintainability, and developers’ skills. A

development team could no longer spend the lion’s share of its time on “plumbing”

issues.

 Technologies such as Java tried to remedy this by off-shouldering memory

management from the developers and by offering a comprehensive set of base classes for

services usually provided by the operating system. However, Java is only incrementally

better than C++, and its improvements introduced liabilities, including poor performance

and difficulties in sharing expensive objects between clients. The Internet also showed

that the component-oriented, client-server model simply didn’t scale well from a

standalone application (and even a distributed application with a handful of clients) to

Internet applications. Suddenly, applications had to withstand huge numbers of clients at

peak load, with spiking fluctuating degrees of load, be available all the time, ensure

security and system integrity, and maintain overall system consistency.

.NET to the Rescue

In my opinion, .NET has learned from the mistakes and lessons of the past and integrated

the strengths of existing technologies, including Java, C++, VB, and COM. For example,

.NET programming languages (such as, C#) don’t have C++’s pitfalls, such as global

types and functions, and multiple inheritance of implementation. C# mimics C++ type

safety and its object-oriented features. C# also borrows properties from VB and garbage

collection from Java.

 .NET is a modern and elegant component technology enabling rapid development of

interacting binary components. .NET simplifies enormously component development,

while maintaining component-oriented programming’s core concepts, required for

scalable and maintainable applications. .NET gives you fundamental component-oriented

development principles, including binary compatibility between client and component,

separation of interface from implementation, object location transparency, concurrency

management, security, and language independence.

 To simplify managing memory allocations and object lifecycle, .NET uses a

sophisticated garbage collection that detects when clients no longer use an object and

then destroys the object. .NET provides a standard binary way of describing exported

types and interfaces. All the developer has to do is put the types definitions as part of the

source files, and .NET builds the information automatically as part of code compilation.

 .NET maintains zealously version compatibility between object and clients. .NET

packs objects into assemblies and gives each assembly an elaborate version number

indicating major and minor version numbers, and build number and revision number

(provided explicitly by the developer or automatically as part of compilation). At run

time, .NET ensures the client always gets a compatible assembly. Developers can also

digitally sign the assembly, ensuring authenticity, providing more uniqueness, and

allowing the clients to share the assembly.

 Even though .NET applications run on operating systems such as Windows, .NET

encapsulates and simplifies the interaction with the underlying operating systems

services. For example, in Windows the call to create a new window accepts 12

parameters. Even the most trivial Windows program requires at least three files and some

80 lines of code. In .NET, you can achieve that with one file, a few lines of code, and the

call to actually create a window requires no parameters. .NET provides operating system

services, including threading, network calls, and file I/O, in a consistent and easy to learn

manner.

 .NET uses heavily object-oriented design patterns in its class libraries and frameworks.

These patterns contribute the most to object-oriented programming in NET, offering

reusable, proven design solutions to common problems. At the same time, .NET

improves some object-oriented concepts. For example, .NET enforces strict inheritance

semantics and inheritance conflict resolution. You can derive a class from only one

concrete class. You can, however, derive from as many interfaces as you like. When you

override a method in a base class, you must declare your intent explicitly, whether you

want to override the base class implementation or hide it. .NET allows binary

inheritance—a developer doesn’t need a base class’s source files to subclass and

specialize its behavior, he only needs a binary component containing the base class.

.NET Provides a Modern
Programming Model

.NET supports many recommended design principles, including separation of user

interface from implementation. Application frameworks, such as ASP.NET, provide

visual user interface design environment (for controls layout) and a separate class that

represents the logic to perform in response to user events.

 Instead of having developers code runtime requirements (for example, multithreading

concurrency management or object persistence and serialization), developers can use

special attributes to declare the class needs. .NET provides numerous attributes, so you

can focus on the domain problem at hand. You can also define your own attributes or

extend existing ones.

 .NET provide a modern, component-oriented, component-security model. Developers

don’t have to hard code security policy in their applications (making them resilient to

policy changes), while maintaining granular control. The classic Windows NT security

model is based on what a given user is allowed to do. This model evolved during when

component technologies were in their infancy and applications were usually standalone,

monolithic chunks of code. In today’s highly distributed, component-oriented

environment, you need a security model based on what a given piece of code—a

component—is allowed to do, not only on what its caller is allowed to do.

 In addition to the preceding advantages, .NET lets you configure permissions for

components and provide evidence to prove that the code has the right credentials to

access a resource or perform some sensitive work. Evidence-based security is related

closely to the component’s origin. System administrators can decide they trust all code

from a particular vendor but distrust everything else, from downloaded components to

malicious attacks. A component can also demand that a permission check be performed

to verify that all callers in its call chain have the right permissions before doing its work.

.NET aims at simplifying component deployment as well. All you need to do is copy the

components to the client directory. If you want to share components, you can install them

in a known shared location.

 In general, most software development tools offer only either flexibility and power, or

ease of use and rapid development. For example, VB6 caters for rapid development at the

expense of maintainability and scalability, while C++ offers power and capabilities, at the

expense of productivity. In contrast, .NET doesn’t force a developer to choose one way

or the other, and it caters to a wide range of developer skills.

 Here are a few examples: Developers can create a window with one line of code, but

they can also override and manipulate the underlying message pumping loop. Developers

can synchronize manually access to their objects by multiple threads to optimize

performance, or they can simply use a synchronization attribute to instruct .NET to do so

for them. Software engineers can adhere to strict component-oriented principals, such as

separation of interface from implementation, but they can also do plain old object-

oriented programming, all in the same code base. Developers can design classic client-

server applications, or they can design powerful, high-throughput multi-tier applications,

while relying on state-of-the-art enterprise and component services, to address the

throughput and scalability requirements.

 This freedom results in much smoother programming models, and developers with

various degrees of skills and experience can work on the same project, maximizing their

skills and productivity.

About the Author:

Juval Lowy is a software architect and the principal of IDesign, a consulting company focused on
.NET design and .NET migration. Juval also conducts training classes and conference talks on
component-oriented design and development processes. He wrote “COM and .NET Component
Services—Mastering COM+” (O’Reilly). Reach him at www.componentware.net.

Captions

Figure 1: Experience a Brief History of Time

Contrary to common knowledge, the past few decades have seen been only a handful of

software engineering breakthroughs. The move to .NET is as significant as the move from DOS

to Windows, or from machine code to high-level structured languages.

Pullquotes

When computers became more pervasive, developers realized

the real issue was to maintain applications for longer periods.

OOP is based on a simple idea—encapsulate the data and the

logic manipulating the data in an object.

Even in the hands of experts, object-oriented programming has

intrinsic flaws.

